Polygon Shape Properties

Definitions

direction.

Length: maximum distance between any

Width: maximum distance across polygon

in the direction perpendicular to the length

RadiusMax: maximum distance from the

RadiusMin: minimum distance from the

polygon centroid to the boundary. Value

is negative if the centroid is outside the

constructed by connecting a subset of

Convex hull: the smallest convex

region that contains the polygon.

polygon centroid to the boundary.

polygon or inside an island.

the polygon vertices.

points on the outer polygon boundary.

The Polygon Shape Properties process (Geometric / Attributes / Polygon Shape Properties) computes shape metrics for individual polygons in one or more geometric objects (vector, CAD, or shape). The results can be saved in tables added to the input objects or to CSV-formatted text files.

Compactness

The process provides a number of measures of *compactness*, which is the most widelyused polygon shape property. A compact polygon has a relatively simple boundary with vertices that are relatively equidistant from the centroid. A circle is the shape with maximum compactness. Compactness measures have applications in analyses of ecological habitats, hydrological properties of drainage basins, and in assessing legislative redistricting plans.

Compactness can be quantified in several ways: 1) from physics, the moment of inertia of the polygon; 2) computations using polygon area and perimeter (or maximum length); 3) area comparison with an ideal shape such as a circle or the polygon's convex hull. Compactness values for the measures described below range from 0 to 1.0. Numbers in square brackets refer to the numbered references on the next page.

By Moment of Inertia [3]: area²/2* pi * moment of inertia

The physical measure of an object's resistance to changes in its rotation is called moment of inertia. It depends on the object's mass, the distribution of mass (shape), and the point of rotation. For 2D polygons, moment of inertia is measured relative to rotation about an axis at the polygon centroid and perpendicular to the mapping plane. Moment of inertia increases with area and complexity of the shape, so compactness is calculated as the ratio of the moment of inertia of a circle of the same area about its center to that of the polygon about its centroid. This measure is less sensitive to polygon vertex positioning errors (noise) and differences in the level of boundary detail than compactness measures computed from perimeter and area, described below.

Richardson [3,6]: 2 * sqrt(pi * area) / perimeter

This expression is equivalent to the ratio of the perimeter of a circle with area equal to that of the polygon to the polygon's actual perimeter.

Iso-Perimetric Quotient [3,4]: 4 * pi * area / perimeter² (also called the Polsby-Popper method and Cox's circularity). This measure is the square of the Richardson compactness.

Gibbs [2]: 4 * area / (pi * length²)

Two measures of compactness are ratios of the polygon area to the area of an ideal shape:

Reock [1,5]: area / (area of minimum spanning circle)

Convex Hull [1]: area / (area of convex hull).

Complexity

Complexity of polygon shape is the opposite of compactness. One measure is provided, with a range from 1 to infinity:

Schwartzberg [1]: perimeter / (2 * sqrt(pi * area)); this is the inverse of the Richardson compactness measure.

Note: Polygon Shape Properties
NE_Legis_Bound_rvc / legis_bound_1990
NE_Legis_Bound_rvc / legis_bound_2000
NE_Legis_Bound_rvc / legis_bound_2010
Select Remove Remove All
Output Add table(s) to object 💌 D/Name None
Properties
🕅 Compactness - by Moment of Inertia = area ² / (2 * pi * I)
🕅 Compactness - Iso-Perimetric Quotient = [4 * pi * area / perimeter²]
Compactness - Richardson = [2 * sqrt(pi * area) / perimeter]
🕅 Compactness - Gibbs = [4 * area / (pi * length²)]
Compactness - Reock = [area / (area of minimum spanning circle)]
🕅 Compactness - Convex Hull = [area / (area of convex hull)]
🕅 Grain Shape Index = [perimeter / length]
🕅 Circularity - Max = [sqrt(area/pi) / RadiusMax]
🕅 Circularity - Min/Max = [sqrt(RadiusMin / RadiusMax) * sign(RadiusMin)]
Complexity - Schwartzberg = [perimeter / (2 * sqrt(pi * area))]
🕅 Orientation Angle
Elongation = [length / width]
🕅 Aspect Ratio = [width / length]
Run Queue Job Save Job Exit Help

Name	¥alue		Units	Units		
DISTRICT	25					
Compactness_MI	0.5628	07				
Compactness_IPQ	0.3968	67				
Compactness_Richardson	0.6299	74				
Compactness_Gibbs	0.3300	12				
Compactness_Reock	0.3300	12				
Compactness_ConvexHull	0.8188	82				
GrainShapeIndex	2.8647	87				
Circularity_MaxDist	0.5313	27				
Circularity_MinMaxRatio	0.4756	12				
Complexity_Schwartzberg	1.5874					
Orientation	66.90		deg			
Elongation	1.3855					
AspectRatio	0.7218					

Shape measures for a state legislative district polygon.

Circularity

Circularity is a property similar to compactness, measuring how closely a polygon's shape matches that of a circle. Two circularity measures are provided:

Max: sqrt(area / pi) / RadiusMax

(ratio of the radius of the circle with equivalent area to the maximum radius of the polygon; range is 0 to 1).

Min/Max: sqrt(|RadiusMin| / RadiusMax) * sign(RadiusMin)

The final factor [sign(RadiusMin)] in the expression is 1 for RadiusMin > 0 and -1 for RadiusMin < 0 (for a polygon centroid outside the polygon boundary). The range is -1 to +1.

Miscellaneous Shape Properties

Grain Shape Index: perimeter / length

Orientation Angle: azimuth of the length direction relative to the map projection.

Elongation: length / width

Aspect Ratio: width / length

(continued)

All of the polygon shape measures take island polygons (holes) into account. The presence of islands reduces compactness and circularity and increases complexity.

Objects georeferenced in geographic (latitude / longitude) coordinates are automatically converted to an orthographic projection centered on the object in order to compute the polygon properties. Coordinate reference systems using planar coordinates do not require any conversion.

Process Interface

Press the Select button to select one or more geometric objects with polygons to process. The file and object names of the selected objects are shown in the list at the top of the window. To remove any object, left-click on its list entry to highlight it and press [Remove]. Press the Remove All button to clear the list. Use the Output menu to choose how to save the computed shape properties: *Add table(s) to object* or *Text file(s)*. You can choose an ID or name to embed in the statistics table(s) to identify each record. The choices from the ID/Name menu are None, Element Number, Polygon_ID.Current (if the polygons have an ID table) and Choose; the latter option prompts you to select a database table and field to provide the ID. When multiple objects are being processed, the field selections presented in the menu refer to the top object in the list. If other objects do not have a field with the selected table and field name, the element number is automatically used as the ID value. For best results with multiple inputs, make sure that they have consistent tables or use element number as the identifier.

The Properties box shows the list of available shape properties with a checkbox allowing you to select or deselect each. Current property selections are saved when you exit the process.

References

- 1. Azavea, Inc., 2010, Redrawing the Map on Redistricting: A National Study. http://cdn.azavea.com/com.redistrictingthenation/pdfs/ Redistricting_The_Nation_White_Paper_2010.pdf.
- 2. Gibbs, J.P., 1961, Urban Research Methods. Princeton, Van Nostrand.
- 3. Li, Wenwe, Goodchild, Michael F., and Church, Richard, 2013, An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. *International Journal of Geographical Information Science*, 27(6), p. 1227-1250.
- 4. Polsby, D.D., and Popper, R.D., 1991, The third criterion: compactness as a procedural safeguard against partial gerrymandering. Yale Law & Policy Review 9(2), p. 301-353.
- 5. Reock, E.C., 1961, A note: measuring compactness as a matter of legislative apportionment. *Midwest Journal of Political Science*, 5(1), p. 70-74
- 6. Richardson, L.F., 1961, The problem of contiguity: an addendum to Statistics of Deadly Quarrels. *General Systems Yearbook* 6, p. 139-187.

